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For the first time the existence of exotic breather-
type asymptotics is proved for solutions of non-
standard linear differential equations modelling
the macroscopic behaviour of composite materials.
These solutions have very oscillating behaviour and
therefore couldn’t be obtained by standard numer-
ical computations. This work is important for fun-
damental research as well as for numerous appli-
cations, especially in the mechanics of composite
materials.

Here we study deformation of a breather type so-
lution for the linear differential equation
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with discontinuous initial data:

u(x, 0) =
{

0, x < 0,
1, x ≥ 0,

ut(x, 0) = 0. (2)

The problem arises in the study of wave motion
in periodic stratified media [1, 2].

In [3] the existence of the breather type solution:

at t → ∞, |x| < ct−1/2
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had been proved considering the equation (1) for
b = 0. Numerical experiments have confirmed the
existence of a solution with exotic (for a linear equa-
tion) asymptotics [4].

Figure 1: b = 0, Re u(x, 50), le = 80

The breather stands out against oscillations of a
smaller amplitude (see Fig.1). These oscillations

Figure 2: b = 1, Re u(x, 50), le = 80

Figure 3: b = 1.5, Re u(x, 50), le = 100

are located between the characteristics x ± t = 0.
Outside the region between the characteristics, the
solution tends exponentially rapidly to the limit val-
ues 0 when x → −∞ and 1 when x → +∞.

The numerical experiments performed have
shown the existence of breather-type solutions in
the case of b �= 0 as well.

Figures 2 and 3 show the real part of the solution
of the problem (1),(2) at t = 50 for b = 1 and
b = 1.5, respectively.

Numerically, instead of the Cauchy problem we
solved an initial-boundary value problem inside the
interval |x| ≤ le.

When t is big enough, a difference between the
solution in the case of b = 0 and the real part of
the solution in the case b �= 0 appears. Even at
t = 9 (in the case b = 1), steps near characteristics
are outlined. When b �= 0 the oscillation amplitude
decreases, while the region of the oscillations
broadens. An exponentially fast recovery of the
limit values happens outside the region between
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the characteristics.
In [5] we proved asymptotics when t → ∞ for

the problem (1-2) in the case b = 1. They confirm
the validity of the breather deformation processes
detected in numerical simulation. Specifically, it is
proved that the support of the breathes is reduced
to |x| < c/t (against |x| < c/

√
t in the case b = 0)

and the exponential decay to the limiting values
occurs at |x| = 1.215...t (against |x| = t in the case
b = 0). As b increases, the oscillation zone expands
and in the limit (|b| = 2 it occupies the entire real
line. The boundaries of the oscillation zone are
easily calculated via the multiple critical points of
the function s/

√
1 − bs + s2. The asymptotics are

proved by using methods of complex variable meth-
ods - stationary phase method and saddle point
method, particularly [6]. Beforehand, following [7],
the solution to the problem (1-2) is represented in
the form of the contour integral

u = − 1
4πi

∫
Γ

(
exp(− ist√

1 − bs + s2
− ixs)+

exp(
ist√

1 − bs + s2
− ixs)

ds

s
.

The contour Γ goes along the real line except a
neighborhood of zero: the pole is rounded in the
upper half plane over a semicircle of small radius.
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